Hospital Docente Clínico Quirúrgico “Dr. Salvador Allende”.
Ciudad de la Habana.

Título: Anestesia general vs Anestesia Combinada (Epidural- General) en Cirugía Torácica electiva. Estudio comparativo.

Autores: Sergio A. Orizondo Pajón.
Isis Nicolau Cruz.
Miriam Falcón Guerra.
Mónica Morua-Delgado Varela.
Tamara Montenegro Oroz
Milagros Pimienta Pegueró.

2007
Resumen

Se realizó un estudio experimental, comparativo, prospectivo y horizontal para demostrar la efectividad de la anestesia combinada epidural-general (AC) en relación con la anestesia general balanceada (AG) en pacientes que se le practicó cirugía torácica programada. Comparamos, estabilidad hemodinámica, oxigenación arterial y fracción de shunt intrapulmonar durante la ventilación unipulmonar, tiempo de ventilación, complicaciones y estadía hospitalaria postoperatoria. Cincuenta pacientes, ASA II-III fueron estudiados, divididos en dos grupos que mostraron homogeneidad. En el grupo AG la técnica anestésica fue tiopental, fentanilo, pancuronio, mantenimiento con halotano en el grupo AC, se combinó igual proceder con bupivacaína 0,5% epidural. Observándose mayor estabilidad hemodinámica en el grupo AC, la ventilación unipulmonar incrementó el shunt en ambos grupos en proporción similar, obteniéndose una discreta mejoría en la oxigenación en el grupo AC sin significación estadística. Las complicaciones postoperatorias fueron similares. El grupo AC presentó menor tiempo de ventilación postoperatoria y estadía hospitalaria. Ambas técnicas fueron satisfactorias para cirugía resectiva pulmonar, la AC parece ofrecer algunas ventajas peroperatorias en este tipo de pacientes.

Abstract:

An experimental, comparative, prospective study was done to show the effectiveness of combined epidural-general anesthesia (CA) in patients who were practiced programmed thoracic surgery.

We compared haemodinamics stability, arterial oxygenation and intrapulmonary shunt fraction during one lung ventilation, ventilation time, complications and postoperative hospitalary stay. Fifty patients, ASA II-III were studied, divided into
two groups that showed homogenity. In group general anesthesia (GA) the
anesthetic technique was tiopental, fentanyl, pancuronio, maintained with
halothane. In group CA, the same procedure was combined with bupivacaine
0.5% epidural, observing more hemodinamic stability in group CA, one lung
ventilation increased the shunt in similar proportion in both groups, obtaining a
discrete improvement in oxygenation in group CA, without significant statistic.
The postoperative complications were similar. Group CA presented less
postoperative ventilation time and hospitalary stay.
Both techniques were satisfactory for resective pulmonary surgery, CA seems to
offer some perioperative advantages in this kind of patients.

Introducción

La cirugía torácica implica un singular conjunto de problemas fisiológicos para
los anestesiólogos que requieren consideraciones especiales.
La posición en decúbito lateral proporciona un acceso óptimo para la mayor
parte de las intervenciones torácicas, pero altera en grado significativo la
relación ventilación perfusión normal. Estas alteraciones se acentúan por la
inducción de la anestesia, la ventilación mecánica y la parálisis muscular
, apareciendo en el pulmón declive áreas de cortocircuito que aumentan el riesgo
de hipoxemia (1). El colapso intencional del pulmón operado acentúa estas
alteraciones creando un gran cortocircuito intrapulmonar que puede alcanzar un
20-30% (1,2), que pudiera ocasionar hipoxemia y constituir un problema clínico.
El manejo anestésico óptimo de los pacientes que sufren toracotomías para
resecciones pulmonares, no ha sido aún definitivamente determinado. Múltiples
estudios se han realizado para identificar la posibilidad de hipoxemia y
optimizar la oxigenación durante la ventilación de un solo pulmón con resultados
controvertidos (3,4,5).
La técnica combinada epidural-general descrita por primera vez en la década de los 60, a la cual se le atribuyen numerosas ventajas en el paciente de alto riesgo \(^{6,7,8}\), gozando en la actualidad de gran aceptación en la cirugía vascular mayor, abdominal de gran envergadura y en la cirugía torácica, tampoco ha escapado a esta contradicción\(^{6,9,10}\).

Esto nos motivó a realizar este estudio donde comparamos la anestesia combinada epidural-general con la anestesia general balanceada comúnmente utilizada en nuestro centro para la cirugía torácica electiva comparando la estabilidad hemodinámica transoperatoria, la oxigenación arterial, fracción de shunt intrapulmonar durante la ventilación de un solo pulmón, así como el tiempo de ventilación, complicaciones, y estadía hospitalaria postoperatoria.

**Método**

Se realizó un estudio experimental, comparativo, prospectivo y longitudinal que incluyó a 50 pacientes, con estado físico ASA II -III, seleccionados para resecciones pulmonares en cirugía electiva, decúbito lateral y ventilación de un solo pulmón.

Todos los pacientes fueron medicados con midazolán 0.04mg/kg de peso y ondansetron 4mg endovenoso en el preoperatorio inmediato, se canalizó arteria radial del lado contra lateral y vena subclavia del mismo lado de la intervención para monitorización y toma de muestras de complementarios.

En el salón de operaciones, se monitorizó frecuencia cardiaca (FC), electrocardiograma (ECG) derivación D2, tensión arterial (sistólica, diastólica y media) por medios no invasivos, saturación arterial de oxígeno (SpO2) por pulsoximetría, presión venosa central (PVC), así como fracción inspirada de oxígeno (FiO2), concentración de gases al final de la espiración (Halotane y CO2) mediante cardiomonitor Artema.
Se dividieron en dos grupos según la técnica anestésica a utilizar. Al grupo anestesia combinada epidural-general (AC) se le colocó un catéter peridural a nivel T 6-7 o T 7-8 por vía media y técnica de perdida de la resistencia, previa dosis de prueba se administró bupivacaina 0,5% en dosis de 0,15ml/Kg de peso. Al grupo anestesia general (AG), se le colocó catéter epidural lumbar para analgesia postoperatoria.

La inducción de la anestesia se realizó con Tiopental 5mg/kg, fentanilo 5mcg/Kg, pancuronio 0,1mg/kg, y lidocaína 1,5mg/kg en ambos grupos. En el grupo AC la inducción se realizó 20 minutos después de la inyección peridural.

El mantenimiento de la anestesia se realizó en el grupo AC con bupivacaina 0,5% a la mitad de la dosis inicial a un intervalo de 150 minutos, en el grupo AG con fentanilo 100-150 mcg en bolo según parámetros clínicos. En ambos grupos se utilizó halotano a concentración menor de 0,75% y la relajación muscular con pancuronio en bolos de 0,06 mg/kg.

La reposición de volumen fue efectuada en ambos grupos con soluciones cristaloides según pérdidas sanguíneas y se transfundieron glóbulos si la hemoglobina descendió por debajo de 8g/dl. No se utilizaron fármacos vasoactivos para evitar su influencia sobre las mediciones de oxigenación.

Se realizó intubación endotraqueal con tubo de doble luz del lado contrario a la intervención comprobándose auscultatoriamente la misma. Los pacientes fueron ventilados con un Servo 900 D con un volumen minuto de 100ml/Kg a una frecuencia respiratoria de 12 x minuto y relación I : E 1:1.9 con oxígeno y aire FiO₂ de 0,4 y con oxígeno al 100% durante la ventilación unipulmonar.

Todos los pacientes salieron intubados a la sala de recuperación donde fueron extubados lo antes posible según criterios clínicos y gasométricos.
La analgesia postoperatoria se efectuó con morfina epidural 0,05mg/kg desde el comienzo del cierre de la toracotomía y pautada cada 12 horas en el postoperatorio.

Se realizaron mediciones de la FC, PVC. TAS, TAM, TAD, en los siguientes momentos.

A su llegada al salón de operaciones.

Posterior a la inducción e intubación.

En el momento de la incisión.

A los 10 minutos de la ventilación de un solo pulmón.

A los 20 minutos de la ventilación de un solo pulmón.

Al finalizar la intervención en decúbito supino.

Se tomaron muestras de gasometrías arterial y venosa central para determinar PaO₂, SaO₂, y cálculo del Qs/Qt según la fórmula CcO₂-CaO₂/CcO₂-CvO₂ en los siguientes momentos.

Paciente en decúbito lateral, FiO₂ de 0,4 antes de la incisión quirúrgica.

A los 10 minutos de la ventilación de un solo pulmón.

A los 20 minutos de la ventilación de un solo pulmón, en ambos casos con FiO₂ de 1 y antes de la ligadura de cualquier vaso pulmonar mayor.

Se registró el tiempo de ventilación postoperatoria desde que finalizó la intervención hasta que el paciente fue extubado en recuperación. Fueron visitados diariamente hasta el alta con el objetivo de evaluar las complicaciones postoperatorias y la estadía hospitalaria.

Se resumieron los resultados cuantitativos a través de medias o porcentajes.

Los resultados cualitativos se expresaron a través de porcentajes.La comparación de medidas cuantitativas continuas se realizaron a través de una técnica paramétrica para comparación de dos grupos (t-student).Las variables
hemodinámicas fueron comparadas a través de análisis de varianza. La comparación de datos cualitativos se realizó a través de la prueba de diferencia entre proporciones (estadígrafo Z). Para todas las análisis estadísticos se utilizó un nivel de significación P < de 0.05.

**Resultados**

En la tabla 1, 2 y 3 se muestran las características básicas de los pacientes estudiados observándose que no existían diferencias entre los grupos. La tabla 4 refleja las variables respiratorias estudiadas. Se observa que el paso a la ventilación de un solo pulmón produjo un incremento en el Qs/Qt prácticamente en la misma proporción en ambos grupos (AG 27.2% AC 27%) con una mínima tendencia a la disminución a los 20 minutos. La PaO2 se mantuvo ligeramente superior en el grupo AC en los tres momentos estudiados en relación con a AG aunque en ninguno de ellos arrojó diferencias estadísticamente significativas. La SaO2 se comportó de forma similar en ambos grupos, ligeramente superior en el grupo AC sin ninguna significación clínica ni estadística.

Cuatro pacientes en el estudio (8%) presentaron episodios de desaturación arterial, distribuyéndose idénticamente 2 en cada grupo.

Las variables hemodinámicas se reflejan en la tabla 5, la TAS, TAD y TAM mantuvo valores estables en ambos grupos en los seis momentos estudiados, el grupo AC presento valores menores que el grupo AG, sin encontrar diferencias significativas entre los grupos exceptuando el momento 3 que correspondió a la incisión quirúrgica donde se observó un aumento significativo desde el punto de vista estadístico P < 0.05 en la TAS, TAD y TAM en el grupo de AG en comparación con el de AC. La FC se comportó también de manera estable en ambos grupos observándose que en
el grupo AG se produjo un aumento estadísticamente significativo desde el comienzo de la intervención quirúrgica que se mantuvo durante la ventilación de un solo pulmón en comparación con el grupo AC y que tiende a regresar a los valores basales al finalizar la intervención. La PVC no arrojó diferencias entre los grupos.

El tiempo de ventilación postoperatorio fue significativamente menor en el grupo AC 1,7 – 2,1 versus 2,98 – 2,8 horas en el grupo AG, como se observa en la tabla 4.

Las complicaciones postoperatorias fueron similares en ambos grupos tabla 6.

El 80 % de los pacientes de cada grupo no presentaron ninguna complicación postoperatoria.

La estadía hospitalaria fue menor en el grupo AC 8.3 ± 5,9 días en comparación con 10.0 ±5,9 días en el grupo AG lo que refleja diferencias estadísticamente significativas P < 0,05.

**Discusión**

Estudios clínicos previos han mostrado resultados contradictorios con respecto a las variables de oxigenación, fracción de shunt intrapulmonar y alteraciones hemodinámicas durante la ventilación de un solo pulmón en cirugía torácica

La anestesia combinada epidural – general tampoco ha escapado a este fenómeno, Garutti (6) observó mayores fracciones de shunt (39,5 %) y menores valores de PaO₂ (120mmHg) cuando comparó esta técnica anestésica con la anestesia intravenosa total durante la ventilación unipulmonar.

Hachenberg y colaboradores (11) estudiaron los efectos de la anestesia epidural torácica en la distribución de la ventilación – perfusión y el volumen de sangre intratorácico antes y después de la inducción de la anestesia general y
demostró que no existieron modificaciones del shunt intrapulmonar dependiente de la bupivacaína en el espacio peridural.

Estudios en animales y humanos sugieren que la anestesia peridural torácica incrementa la vasoconstricción pulmonar hipóxica (V.P.H.), en relación con sus efectos sobre la circulación pulmonar secundario al bloqueo simpático, si se mantiene la estabilidad hemodinámica \(^{(12,13)}\).

Von Dossow y col. \(^{(10)}\) encontraron mejor oxigenación arterial en el grupo de la anestesia combinada, a pesar de existir iguales fracciones de shunt, cuando se comparó con la anestesia general intravenosa. Estos autores plantearon que durante la ventilación de un solo pulmón existió un aumento en el gasto cardiaco en el grupo de anestesia general que no se observó en la anestesia combinada. En presencia de atelectasias regionales la PaO\(_2\) está significativamente afectada por el gasto cardiaco. La disminución del mismo está asociada a una disminución de la presión de la arteria pulmonar, lo cual puede potenciar la V.P.H. y reducir el shunt \(^{(10)}\).

Nuestros resultados reflejaron un aumento del shunt intrapulmonar al pasar a la ventilación de un solo pulmón, similar en ambos grupos y discretamente mejor oxigenación arterial en el grupo AC aunque sin diferencias estadísticamente significativas.

Fanelli \(^{(9)}\) demostró que la hipotensión y la bradicardia están asociados al bloqueo simpático de la anestesia peridural alta, lo cual se potencializa al combinarlo con la anestesia general por el efecto de los fármacos sobre la contractilidad y la resistencia vascular sistémica. Davies \(^{(14)}\) también destaca estas alteraciones lo que hace necesario el empleo de vasopresores con más frecuencia que cuando se emplea la anestesia general, sin que afecte los resultados postoperatorio. Licker \(^{(15)}\) afirma también que la técnica combinada,
inhibe el predominio simpático, lo que facilita el control de la tensión arterial, la frecuencia cardiaca y su recuperación postquirúrgica.

En nuestro estudio se observó una disminución de la TAS, TAD, TAM que fue ligeramente superior en el grupo AC pero satisfactorio desde el punto de vista clínico, manteniéndose sus valores con gran estabilidad.

Se ha señalado la necesidad de un agente de inducción que produzca cambios hemodinámicos mínimos cuando se combinan ambas técnicas. Kassaba (16) y Arena (17) observaron depresión profunda de la TAM asociada a la inducción de la AG con propofol en combinación con anestesia peridural.

En nuestro estudio utilizamos tiopental a dosis habituales sin que se asociara a disminución adicional importante de la tensión arterial, coincidiendo con otros autores (6,10) quienes con propofol y tiopental respectivamente tampoco reportaron este fenómeno.

La frecuencia cardiaca se incrementa en nuestro trabajo, a partir de la incisión quirúrgica y se mantiene durante la ventilación unipulmonar, alcanzando valores significativos desde el punto de vista estadístico en el grupo AG. El bloqueo simpático torácico explicaría las escasas modificaciones en la frecuencia cardiaca observadas en el grupo AC. Nuestra pobre monitorización hemodinámica nos impidió constatar el aumento del gasto cardíaco que se reporta al pasar a la ventilación de un solo pulmón en los pacientes bajo anestesia general, efecto que es minimizado por la anestesia combinada (10,17).

La extubación después de la cirugía se efectuó significativamente más temprano en el grupo AC. Boldt y col (13) reportan tiempos de extubación mucho menores (31±10 minutos), después de toracotomía que los mostrados en nuestro estudio. La extubación precoz, incluso en el salón de operaciones es perfectamente posible en la mayoría de los casos y en ocasiones deseable para
evitar someter a altas presiones la sutura bronquial y a la invasión prolongada de las vías respiratorias. Nuestro protocolo de trabajo incluyó ventilación postoperatoria y destete gradual, donde también la anestesia combinada demostró su efectividad como se evidencia ampliamente en la literatura \(^{7,14}\). Las complicaciones postoperatorias fueron similares en ambos grupos acorde con los reportes bibliográficos que reflejan la existencia de un 25% de complicaciones pulmonares en pacientes que sufren resecciones del pulmón, elevándose hasta un 60% en las neumonectomías \(^{18}\). Hasta un 30% de arritmias son reportadas en el postoperatorio en cirugía de tórax, particularmente las supraventriculares que se incrementan con la edad avanzada, enfermedades cardiopulmonares concomitantes, la extensión y tipo de resección efectuada \(^{19}\).

La estadía hospitalaria fue menor en el grupo AC en nuestro trabajo, aspecto ya señalado por Bromage\(^{8}\) y Lang\(^{20}\).

Concluimos que ambos métodos anestésicos son satisfactorios en cirugía torácica electiva. La anestesia combinada epidural general parece ofrecer algunas ventajas como mejoría en la oxigenación arterial, gran estabilidad hemodinámica, extubación precoz y menor estadía hospitalaria postoperatoria. Estudios más amplios y específicos son necesarios para arribar a conclusiones definitivas.
Bibliografía


Tabla No 1: Distribución de los pacientes según edad, peso, hemoglobina y tipo de anestesia.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Anestesia combinada n=25</th>
<th>Anestesia general n=25</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{x}$</td>
<td>D.S</td>
<td>$\bar{x}$</td>
</tr>
<tr>
<td>Edad</td>
<td>52.46 ±12.92</td>
<td>52.13 ±12.77</td>
<td>NS</td>
</tr>
<tr>
<td>Peso</td>
<td>65.28 ±13.48</td>
<td>65.82 ±12.5</td>
<td>NS</td>
</tr>
<tr>
<td>Hemoglobina</td>
<td>12.4 ±1.20</td>
<td>12.9 ±1.16</td>
<td>NS</td>
</tr>
</tbody>
</table>

Tabla No 2: Distribución de los pacientes según tipo de anestesia y sexo.

<table>
<thead>
<tr>
<th>Sexo</th>
<th>Anestesia combinada n=25</th>
<th>Anestesia general n=25</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>%</td>
<td>No</td>
</tr>
<tr>
<td>Femenino</td>
<td>6</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Masculino</td>
<td>19</td>
<td>76</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

Tabla No 3: Distribución de los pacientes según clasificación de la ASA y lado de la toracotomía.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Anestesia combinada n=25</th>
<th>Anestesia general n=25</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA (II / III)</td>
<td>17/ 8</td>
<td>16/ 9</td>
<td>NS</td>
</tr>
<tr>
<td>Toracotomía(D/I)</td>
<td>15/ 10</td>
<td>16/ 9</td>
<td>NS</td>
</tr>
</tbody>
</table>
### Tabla No 4: Variables de Oxigenación

<table>
<thead>
<tr>
<th>Variables</th>
<th>Anestesia General</th>
<th>Anestesia combinada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A/I*</td>
<td>VUP**</td>
</tr>
<tr>
<td><strong>O2 (mm Hg)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO2</td>
<td>137.2</td>
<td>130.5</td>
</tr>
<tr>
<td>SaO2 (%)</td>
<td>98.61</td>
<td>95.23</td>
</tr>
<tr>
<td>Qs/Qt(%)</td>
<td>15.5</td>
<td>42.7</td>
</tr>
</tbody>
</table>

*(A/I): antes de la incisión.

**(VUP): ventilación un solo pulmón

### Tabla No 5: Variables Hemodinámicas según diferentes momentos del acto quirúrgico.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Anestesia combinada</th>
<th>Anestesia general</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I Basal</td>
<td>II PI*</td>
</tr>
<tr>
<td>TAS (mmHg)</td>
<td>125.4</td>
<td>112.2</td>
</tr>
<tr>
<td>TAM (mmHg)</td>
<td>97.7</td>
<td>85.73</td>
</tr>
<tr>
<td>TAD (mmHg)</td>
<td>80.5</td>
<td>74.15</td>
</tr>
<tr>
<td>FC (Lpm)</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>PVC (cmH2O)</td>
<td>8.5</td>
<td>10.8</td>
</tr>
</tbody>
</table>

- : p< 0.05

* Postinducción.

** Incisión.
<table>
<thead>
<tr>
<th>Complicaciones</th>
<th>AG No</th>
<th>%</th>
<th>AC No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguna</td>
<td>20</td>
<td>80</td>
<td>21</td>
<td>84</td>
</tr>
<tr>
<td>Insuficiencia Respiratoria</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Arritmias</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Sangramiento Digestivo</td>
<td>_</td>
<td>_</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Hematoma de la Pared</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empiema</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>