Ilustrados comunidad mundial educativa
Inicio | Escribenos
User: Pass: Recordar ó (Registrate!)

| !Publicar Articulo¡

Álgebra booleana. Tablas de verdad

Resumen: Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados. Escribir la tabla de verdad para la función lógica. Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas. Escriba la tabla de verdad de la función: F = [(A B). C]. Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.
4,098 visitas
Rating: 0
Tell a Friend
Autor: Mabel Gonzales Urmachea

1.       Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados

Antes de desarrollar la pregunta tengamos claro algunos conceptos:

Tablas De Verdad

Son un medio para describir la manera en que la salida de un circuito lógico depende de los niveles lógicos que haya en la entrada del circuito.

En una tabla se muestra que ocurre al estado de salida con cualquier grupo de condiciones de entrada, los verdaderos valores de salida dependerán del tipo de circuito lógico.

El número de combinaciones de entrada será igual a 2   para una tabla de verdad con “n” entradas.

Dos de los teoremas más importantes del álgebra booleana fueron enunciados por el matemático DeMorgan. Los Teoremas de DeMorgan son de gran utilidad en la simplificación de expresiones en las cuales se invierte un producto o suma de variables. Los dos teoremas son:

a) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

aplicando las leyes de DEMORGAN

  F (A, B, C, D)=

 

  F (A, B, C, D)=

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

A

B

C

D

F

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

 

 

 

 

 

b) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

A

B

C

D

F

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

0

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

c) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

 

2.       Escribir la tabla de verdad para la función lógica:

Dibujar un diagrama de circuito lógico, utilizando solo compuertas NAND de 2 entradas.

Asumir que solo disponemos de entradas directas(sin complementar)

Utilice 7400 y numere los pines para todas las conexiones en su circuito.

La fórmula se pueda escribir como:

 

Siguiendo la ley de DEMORGAN

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

 

3.       Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas.

a) XOR de 2 entradas

 

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

 

Z = A Å B =

 

 

 

 

A

B

C

Z

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

 

b) XOR de 3 entradas

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

Z = A Å B = 

4.       Escriba la tabla de verdad de la función: F =  ((A + B). C)

A
B
C
F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

0

1

0

1

0

 

 

5.       Escribir la expresión booleana y la tabla de verdad del circuito mostrado:

La expresión Booleana:

Z =

 

 

6.       Diseñar el circuito que responde a la siguiente tabla de verdad

 

C

B

A

Y

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

 

 

7.       Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.

La función booleana es la siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

            Simplificando:

 

El circuito es el siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

Autor:
Mabel Gonzales Urmachea
mabelgonzalesu@hotmail.com

Articulos relacionados:
Compendio de Razonamiento Matemático
Resumen:
Los problemas que aquí se presentan tienen como característica lo siguiente: la información siempre se presenta en forma desdordenada y el problema tiene la información n...
El aprendizaje del cáculo con matrices a través del ordenador. (doc)
Resumen:
El presente artículo se basa en la investigación titulada “Multimedia para fortalecer el aprendizaje del cálculo con matrices en la asignatura Matemática I del segundo añ...
La formación de conceptos a través de la resolución de problemas, utilizando la modelación
Resumen:
El presente trabajo tiene como punto de partida, la contradicción que se da entre la formación del concepto función lineal y sus posibles aplicaciones durante el proceso ...
¿Cuál es la fórmula matemática del azar? (pdf)
Resumen:
Si tuviéramos que decidir de forma intuitiva cuál de estas series (compuestas sólo por seis variables) es aleatoria, nos decantaríamos casi con total seguridad por la seg...
El geómetra, una alternativa para la obtención de propiedades y teoremas geométricos en 7 Grado
Resumen:
La ponencia presenta una propuesta de actividades para la obtención de propiedades y teoremas geométricos que se sustenta en la utilización del auxiliar geométrico: El Ge...
Copyright © 2011 ilustrados.com, Monografias, tesis, bibliografias, educacion. Tofos los temas y publicaciones son propiedad de sus respectivos autores ©