Ilustrados comunidad mundial educativa
Inicio | Escribenos
User: Pass: Recordar ó (Registrate!)

| !Publicar Articulo¡

Álgebra booleana. Tablas de verdad

Resumen: Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados. Escribir la tabla de verdad para la función lógica. Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas. Escriba la tabla de verdad de la función: F = [(A B). C]. Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.
2,961 visitas
Rating: 0
Tell a Friend
Autor: Mabel Gonzales Urmachea

1.       Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados

Antes de desarrollar la pregunta tengamos claro algunos conceptos:

Tablas De Verdad

Son un medio para describir la manera en que la salida de un circuito lógico depende de los niveles lógicos que haya en la entrada del circuito.

En una tabla se muestra que ocurre al estado de salida con cualquier grupo de condiciones de entrada, los verdaderos valores de salida dependerán del tipo de circuito lógico.

El número de combinaciones de entrada será igual a 2   para una tabla de verdad con “n” entradas.

Dos de los teoremas más importantes del álgebra booleana fueron enunciados por el matemático DeMorgan. Los Teoremas de DeMorgan son de gran utilidad en la simplificación de expresiones en las cuales se invierte un producto o suma de variables. Los dos teoremas son:

a) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

aplicando las leyes de DEMORGAN

  F (A, B, C, D)=

 

  F (A, B, C, D)=

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

A

B

C

D

F

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

 

 

 

 

 

b) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

A

B

C

D

F

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

0

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

c) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

 

2.       Escribir la tabla de verdad para la función lógica:

Dibujar un diagrama de circuito lógico, utilizando solo compuertas NAND de 2 entradas.

Asumir que solo disponemos de entradas directas(sin complementar)

Utilice 7400 y numere los pines para todas las conexiones en su circuito.

La fórmula se pueda escribir como:

 

Siguiendo la ley de DEMORGAN

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

 

3.       Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas.

a) XOR de 2 entradas

 

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

 

Z = A Å B =

 

 

 

 

A

B

C

Z

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

 

b) XOR de 3 entradas

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

Z = A Å B = 

4.       Escriba la tabla de verdad de la función: F =  ((A + B). C)

A
B
C
F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

0

1

0

1

0

 

 

5.       Escribir la expresión booleana y la tabla de verdad del circuito mostrado:

La expresión Booleana:

Z =

 

 

6.       Diseñar el circuito que responde a la siguiente tabla de verdad

 

C

B

A

Y

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

 

 

7.       Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.

La función booleana es la siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

            Simplificando:

 

El circuito es el siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

Autor:
Mabel Gonzales Urmachea
mabelgonzalesu@hotmail.com

Articulos relacionados:
Estudio e Implementación Amigable del método Gradiente Conjugado con el uso de precondicionadores (doc)
Resumen:
La resolución mediante métodos numéricos de aplicaciones cada vez más complejas en el área de la ciencia y la técnica ha traído como consecuencia la necesidad creciente d...
Historia de la Geometría Descriptiva y el Dibujo Técnico en Cuba
Resumen:
La Historia de la Geometría Descriptiva y el Dibujo Técnico en Cuba, es una obra fragmentada, pero que viene a llenar un vacío en nuestras áreas de Expresión Gráfica, por...
La sistematización de la Geometría Plana
Resumen:
Este trabajo es el resultado de una investigación donde se expone una alternativa para impartir la Geometría Plana. Para ello se tuvo en cuenta un estudio lógico históric...
Conjetura de los Coeficientes Intercambiados de Collatz
Resumen:
Acá se exponen las propiedades de la función n + 3, que no es mas que un intercambio de los coeficientes numéricos de la función 3n + 1, dada por Collatz en su conjetura.
Una aproximación a la Didáctica en el Proceso del Aprendizaje de las Matemáticas
Resumen:
El problema del aprendizaje de las matemáticas tal vez es uno de los mayores retos para la didáctica, los factores que inciden en el problema son múltiples y de ahí nace ...
Copyright © 2011 ilustrados.com, Monografias, tesis, bibliografias, educacion. Tofos los temas y publicaciones son propiedad de sus respectivos autores ©