Ilustrados comunidad mundial educativa
Inicio | Escribenos
User: Pass: Recordar ó (Registrate!)

| !Publicar Articulo¡

Álgebra booleana. Tablas de verdad

Resumen: Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados. Escribir la tabla de verdad para la función lógica. Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas. Escriba la tabla de verdad de la función: F = [(A B). C]. Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.
3,358 visitas
Rating: 0
Tell a Friend
Autor: Mabel Gonzales Urmachea

1.       Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados

Antes de desarrollar la pregunta tengamos claro algunos conceptos:

Tablas De Verdad

Son un medio para describir la manera en que la salida de un circuito lógico depende de los niveles lógicos que haya en la entrada del circuito.

En una tabla se muestra que ocurre al estado de salida con cualquier grupo de condiciones de entrada, los verdaderos valores de salida dependerán del tipo de circuito lógico.

El número de combinaciones de entrada será igual a 2   para una tabla de verdad con “n” entradas.

Dos de los teoremas más importantes del álgebra booleana fueron enunciados por el matemático DeMorgan. Los Teoremas de DeMorgan son de gran utilidad en la simplificación de expresiones en las cuales se invierte un producto o suma de variables. Los dos teoremas son:

a) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

aplicando las leyes de DEMORGAN

  F (A, B, C, D)=

 

  F (A, B, C, D)=

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

A

B

C

D

F

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

 

 

 

 

 

b) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

A

B

C

D

F

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

0

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

c) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

 

2.       Escribir la tabla de verdad para la función lógica:

Dibujar un diagrama de circuito lógico, utilizando solo compuertas NAND de 2 entradas.

Asumir que solo disponemos de entradas directas(sin complementar)

Utilice 7400 y numere los pines para todas las conexiones en su circuito.

La fórmula se pueda escribir como:

 

Siguiendo la ley de DEMORGAN

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

 

3.       Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas.

a) XOR de 2 entradas

 

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

 

Z = A Å B =

 

 

 

 

A

B

C

Z

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

 

b) XOR de 3 entradas

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

Z = A Å B = 

4.       Escriba la tabla de verdad de la función: F =  ((A + B). C)

A
B
C
F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

0

1

0

1

0

 

 

5.       Escribir la expresión booleana y la tabla de verdad del circuito mostrado:

La expresión Booleana:

Z =

 

 

6.       Diseñar el circuito que responde a la siguiente tabla de verdad

 

C

B

A

Y

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

 

 

7.       Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.

La función booleana es la siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

            Simplificando:

 

El circuito es el siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

Autor:
Mabel Gonzales Urmachea
mabelgonzalesu@hotmail.com

Articulos relacionados:
Historia del numero Pi
Resumen:
Se indica con la letra Pi la relación constante entre la longitud de una circunferencia y su diámetro "d" o entre el área "S" de un círculo y el cuadrado de su radio "r".
Evaluación del aprendizaje de la matemática a través de la elaboración de mapas conceptuales
Resumen:
Si tenemos en cuenta que las características de los estudiantes que ingresan a nuestra Universidad son “atípicas” con relación a la formación estable, organizada y planif...
Dirección del proceso docente mediante el enfoque matemático de la teoría general de sistemas
Resumen:
Teniendo en cuenta la tendencia internacional hacia el Siglo XXI del enfoque interdisciplinario y los estudios multidisciplinarios en las carreras de ingenierías y la nec...
Derivada de una Función
Resumen:
Una de las ideas básicas en Cálculo Matemático es el concepto de Derivada. Para introducir dicho concepto se recurre generalmente a dos problemas: uno Físico, para calcul...
Interpolación y aproximación de Funciones
Resumen:
Lenguaje utilizado3. Polinomio de interpolación de diferencias divididas de Newton. Interpolación cuadrática. Polinomio de interpolación de Lagrange.
Copyright © 2011 ilustrados.com, Monografias, tesis, bibliografias, educacion. Tofos los temas y publicaciones son propiedad de sus respectivos autores ©