Ilustrados comunidad mundial educativa
Inicio | Escribenos
User: Pass: Recordar ó (Registrate!)

| !Publicar Articulo¡

Álgebra booleana. Tablas de verdad

Resumen: Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados. Escribir la tabla de verdad para la función lógica. Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas. Escriba la tabla de verdad de la función: F = [(A B). C]. Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.
3,757 visitas
Rating: 0
Tell a Friend
Autor: Mabel Gonzales Urmachea

1.       Escribir la expresión booleana y la tabla de verdad de los circuitos mostrados

Antes de desarrollar la pregunta tengamos claro algunos conceptos:

Tablas De Verdad

Son un medio para describir la manera en que la salida de un circuito lógico depende de los niveles lógicos que haya en la entrada del circuito.

En una tabla se muestra que ocurre al estado de salida con cualquier grupo de condiciones de entrada, los verdaderos valores de salida dependerán del tipo de circuito lógico.

El número de combinaciones de entrada será igual a 2   para una tabla de verdad con “n” entradas.

Dos de los teoremas más importantes del álgebra booleana fueron enunciados por el matemático DeMorgan. Los Teoremas de DeMorgan son de gran utilidad en la simplificación de expresiones en las cuales se invierte un producto o suma de variables. Los dos teoremas son:

a) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

aplicando las leyes de DEMORGAN

  F (A, B, C, D)=

 

  F (A, B, C, D)=

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

A

B

C

D

F

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

1

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

1

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

 

 

 

 

 

b) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

A

B

C

D

F

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

1

1

0

0

0

1

1

1

0

1

0

0

0

0

1

0

0

1

0

1

0

1

0

0

1

0

1

1

0

1

1

0

0

0

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

 

c) La expresión booleana es:

                                                      F (A, B, C, D)=

                                                          

Como tenemos 4 entradas entonces para la tabla sería: 2   , entonces tenemos 16 combinaciones.

 

 

2.       Escribir la tabla de verdad para la función lógica:

Dibujar un diagrama de circuito lógico, utilizando solo compuertas NAND de 2 entradas.

Asumir que solo disponemos de entradas directas(sin complementar)

Utilice 7400 y numere los pines para todas las conexiones en su circuito.

La fórmula se pueda escribir como:

 

Siguiendo la ley de DEMORGAN

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

 

3.       Dibujar la tabla de verdad y la expresión booleana e una puerta XOR de 2 y 3 entradas.

a) XOR de 2 entradas

 

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

 

Z = A Å B =

 

 

 

 

A

B

C

Z

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

 

b) XOR de 3 entradas

A

B

Z

0

0

0

0

1

1

1

0

1

1

1

0

Z = A Å B = 

4.       Escriba la tabla de verdad de la función: F =  ((A + B). C)

A
B
C
F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

0

1

0

1

0

 

 

5.       Escribir la expresión booleana y la tabla de verdad del circuito mostrado:

La expresión Booleana:

Z =

 

 

6.       Diseñar el circuito que responde a la siguiente tabla de verdad

 

C

B

A

Y

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

0

0

 

 

7.       Obtener la función booleana el siguiente circuito. Implementar con CI-TTL simplificar el circuito y verificar la equivalencia.

La función booleana es la siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

            Simplificando:

 

El circuito es el siguiente:

X

Y

Z

F

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

1

1

0

1

 

Autor:
Mabel Gonzales Urmachea
mabelgonzalesu@hotmail.com

Articulos relacionados:
Notas sobre la Transformada de Laplace
Resumen:
En el presente documento demostraremos matemáticamente si las siguientes igualdades se cumplen, para esto empezaremos haciendo un análisis de la serie de Fourier, básicam...
Duración y Convexidad en la valoración de Bonos
Resumen:
Duración. Convexidad. Uso de la Duración y Convexidad para determinar la sensibilidad del Bono. La Duración es un indicador desarrollado por Frederick Macaulay en 1938 pe...
Integración numérica de una función con Límites definidos por el Método de la Regla Rectangular (pdf)
Resumen:
La Regla Rectangular es uno de los métodos utilizados para resolver integrales definidas en el cálculo numérico.
Descartes y la Geometria
Resumen:
En la obra de Descartes, la filosofía moderna, la matemática y la física, son tres aspectos esenciales que se coordinan. En ella, la matemática sirve de paradigma general...
Una nueva visión de la Matemática, en el proceso educativo actual
Resumen:
El trabajo desarrollado a continuación hace énfasis en algunos aspectos de la crisis educativa que se vive en la actualidad. Específicamente, el artículo consiste en una ...
Copyright © 2011 ilustrados.com, Monografias, tesis, bibliografias, educacion. Tofos los temas y publicaciones son propiedad de sus respectivos autores ©