Ilustrados comunidad mundial educativa
Inicio | Escribenos
User: Pass: Recordar ó (Registrate!)

| !Publicar Articulo¡

Propiedades de las sumatorias

Resumen: Generalidades. Propiedades de las sumatorias. Reportadas en la literatura. Obtenidas en este trabajo. Considerando simetría en el recorrido del índice de la suma. Solución de Sistemas de Ecuaciones Lineales con variable independiente de la forma x ± kD x. El trabajo con sumas de números es frecuente en múltiples problemas que deben enfrentar a diario los especialistas de diversas ramas del conocimiento, y para su determinación se trabaja desde el punto de vista teórico en la obtención de expresiones compactas, no obstante las facilidades que brindan las aplicaciones de la Ofimática, con vistas a evitar errores provenientes de la captación de datos.
1,585 visitas
Rating: 0
Tell a Friend
Autor: M.Sc. Lic. Jesús Mesa Orama

Resumen

I. Introducción

II. Generalidades

III. Propiedades de las sumatorias

III.1 Reportadas en la literatura

III.2 Obtenidas en este trabajo

III.2.1 Considerando simetría en el recorrido del índice de la suma.

II.2.2 Solución de Sistemas de Ecuaciones Lineales con variable independiente de la forma x ± kDx.

IV. Conclusiones.

V. Bibliografía.

 

Resumen

El trabajo con sumas de números es frecuente en múltiples problemas que deben enfrentar a diario los especialistas de diversas ramas del conocimiento, y para su determinación se trabaja desde el punto de vista teórico en la obtención de expresiones compactas, no obstante las facilidades que brindan las aplicaciones de la Ofimática,  con vistas a evitar errores provenientes de la captación de datos.

Tomando en cuenta el amplio espectro de aplicaciones que pueden ser beneficiadas con este tipo de resultado, en el presente trabajo se realiza una recopilación de las propiedades de las sumatorias reportadas en la literatura, posterior a lo cual se proponen y demuestran otro conjunto particularmente relevante cuando se trabaja con funciones de variable discreta cuyo intervalos de variación son uniformes en todo el dominio de la función.

 

I. Introducción

El estudio de fenómenos y procesos que ocurren en la Naturaleza y la Sociedad conduce a la formulación de modelos que los describen y predicen su comportamiento, los cuales, no obstante su diversidad, pueden agruparse en dos categorías: continuos, como la descripción de la transmisión del movimiento a través de una cuerda, el desplazamiento de un vehículo, etc., o discretos, como la serie de pagos históricos de una entidad, los registros de temperatura de un país o territorio, etc.

Esta última categoría, discretos, tiene gran importancia en la actualidad atendiendo al acelerado desarrollo de las técnicas digitales, que en la práctica es un proceso donde toda la información, en última instancia, se representa a través de conjuntos ordenados de dos valores lógicos: falso o verdadero.

En términos matemáticos, el estudio de las funciones cuya variable dependiente exhibe una variación discreta constituye una especialidad, que tiene en las sumatorias y series un componente relevante.

Tomando en cuenta lo señalado, en el presente trabajo se relacionan un conjunto de propiedades reportadas en la literatura sobre las sumatorias y se deducen otras que pueden facilitar cálculos tales como la solución de Sistemas de Ecuaciones Lineales resultantes del planteamiento del problema de la obtención de expresiones analíticas para la derivada de funciones de variable independiente discreta.

 

II. Generalidades

Por sumatoria se entiende la suma de un conjunto finito de números, que se denota como sigue:

donde:

S: magnitud resultante de la suma.

T: cantidad de valores a sumar.

k: índice de la suma, que varía entre h y h+t

h: punto inicial de la sumatoria

h+t: punto final de la sumatoria

nk: valor de la magnitud objeto de suma en el punto k

Un tipo particular de sumatoria de gran importancia lo es el caso cuando t→ ∞, que se conoce como serie y se representa de la manera siguiente:

Considerando la amplitud que reviste el análisis de las series, este tema no será abordado en este trabajo.

 

III. Propiedades de las sumatorias

Entre las propiedades generales de las sumatorias reportadas en la literatura se encuentra las once que se relacionan a continuación, cuya demostración se realiza utilizando el procedimiento matemático de Inducción Completa.

III.1 Reportadas en la literatura

Propiedad #1:

Propiedad #2:

Propiedad #3:

Propiedad #4:

Propiedad #5:

Propiedad #6:

Propiedad #7:

Propiedad #8:

Propiedad #9:

Propiedad #10:

Propiedad #11:

 

III.2 Obtenidas en este trabajo

En la práctica existen múltiples problemas cuya solución conduce al cálculo de sumatorias que cumplen con requisitos especiales, como es el caso de la solución de Sistemas de Ecuaciones Lineales resultante para la determinación de las derivadas de funciones con intervalo de variación uniforme de la variable dependiente; los problemas que exhiben simetría, etc., bajo cuyas condiciones es posible obtener expresiones útiles de trabajo, que simplifican las operaciones a realizar, entre las que pueden señalarse las que se deducen a continuación.

 

III.2.1 Considerando simetría en el recorrido del índice de la suma

Una condición que trata de utilizarse siempre que sea posible, ya que simplifica los cálculos en los modelos de fenómenos o procesos, es la simetría, la que en términos de las sumatorias esta característica se corresponde con la variación del índice de la suma en el intervalo  como se indica a continuación:

Bajo esta hipótesis de trabajo, es posible obtener el conjunto de propiedades que se demuestran a continuación.

Propiedad #1:  

Demostración:

Propiedad #2:

Demostración:

Propiedad #3:

Propiedad #4:

Propiedad #5:

II.2.2 Solución de Sistemas de Ecuaciones Lineales con variable independiente de la forma x ± kDx

Una aplicación en la cual las sumatorias simétricas adoptan un término interesante es el caso de la obtención de expresiones analíticas por el cálculo de las derivadas de funciones de variable discreta, en el cual es común trabajar con términos de la forma  elevado a una cierta potencia. A continuación se deducen cinco propiedades de gran utilidad práctica.

Propiedad #1:  Cálculo de

Propiedad #2: Cálculo de

Propiedad #3: Cálculo de

 

Propiedad #4: Cálculo de

Propiedad #5: Cálculo de

 

Propiedad #6: Cálculo de

IV. Conclusiones

Como conclusión de este trabajo puede señalarse que se relacionan un conjunto de propiedades de las sumatorias descritas en la literatura, a partir de las cuales se dedujeron diversas propiedades, que son de particular utilidad para el cálculo de los determinantes asociados a la solución del Sistema de Ecuaciones Lineales resultante del planteamiento del problema de obtención de expresiones analíticas para el cálculo de la derivada de funciones de variable discreta.

 

V. Bibliografía

Challice, J.S; Clarke, G.M.:«Mathematical Analysis of the Gaussian and Lorentzian Incremental Second Derivative Functions», Spectrochimica Acta, vol 21 pp:791-797, 1965.

Dixit, L.; Ram, S.:«Quantitive Analysis by Derivative Electronics Spectroscopy», Applied Sprectroscopy Reviews, vol 21, #4, pp:311-418, 1985.

Faddeev, D.K.; Faddeva, V.N.:«Computational Methods of Linear Algebra», Ediciones Revolucionarias, Cuba, 1971.

Fraser, RDB; Suzuki, E.:«Resolution of Overlapping Bands: Functions for Simulating Bands Shapes», Analytical Chemistry, vol 41 #1, pp:37-39, ene/69.

Glez, M.O.; Mancill, J.D.: «Álgebra Elemental Moderna», Editora Pedagógica, Tercera Edición, Vol·II, Cuba, 1961

Mesa, J.; Bermello, A.: «Cálculo de las derivadas de hasta cuarto orden de funciones de variable discreta», en preparación para enviar a monografías.com

Samarski, A.A.:«Introducción a los Métodos Numéricos», Editorial MIR, Moscú, 1986.

Spivak, M.:«Calculus», Ediciones Revolucionarias, Cuba, 1974.

Suárez, M.: «Matemática Numérica», Pueblo y Educación, Cuba 1982.

Taylor, A.E.: «Advanced Calculus», Ediciones Revolucionarias, Cuba, 1968.

ASM Handbook of Engineering Mathematics, American Society of Metals, USA, 1983.

 

Trabajo enviado por: M.Sc. Lic. Jesús Mesa Orama, Especialista de Normas y Procedimientos, Sociedad Havanatur S.A., Corporación CIMEX S.A.

Email: jmesa@cimex.com.cu

Fecha de culminación: marzo/2003

Articulos relacionados:
Conceptos Básicos de Teoría de Conjuntos
Resumen:
Introducción al concepto de Teoría de Conjuntos. Conceptos básicos de la Teoría de Conjuntos. Colecciones: Clases y Conjuntos. El Conjunto Universo Local.
El concepto de límite de funciones lineales, usando Cabri Geometre II (ppt)
Resumen:
La notación para la definición de límite, es muy compleja y confusa cuando los alumnos tratan con ella por primera vez en los cursos de cálculo diferencial, sin embargo...
Historia del numero Pi
Resumen:
Se indica con la letra Pi la relación constante entre la longitud de una circunferencia y su diámetro "d" o entre el área "S" de un círculo y el cuadrado de su radio "r".
Derivada de una Función
Resumen:
Una de las ideas básicas en Cálculo Matemático es el concepto de Derivada. Para introducir dicho concepto se recurre generalmente a dos problemas: uno Físico, para calcul...
Estudio e Implementación Amigable del método Gradiente Conjugado con el uso de precondicionadores (doc)
Resumen:
La resolución mediante métodos numéricos de aplicaciones cada vez más complejas en el área de la ciencia y la técnica ha traído como consecuencia la necesidad creciente d...
Copyright © 2011 ilustrados.com, Monografias, tesis, bibliografias, educacion. Tofos los temas y publicaciones son propiedad de sus respectivos autores ©